Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542529

ABSTRACT

Members of the TaCKX gene family (GFM) encode oxidase/dehydrogenase cytokinin degrading enzymes (CKX), which play an important role in the homeostasis of phytohormones, affecting wheat development and productivity. Therefore, the objective of this investigation was to test how the expression patterns of the yield-related TaCKX genes and TaNAC2-5A (NAC2) measured in 7 days after pollination (DAP) spikes and the seedling roots of parents are inherited to apply this knowledge in the breeding process. The expression patterns of these genes were compared between parents and their F2 progeny in crosses of one mother with different paterns of awnless cultivars and reciprocal crosses of awned and awnless lines. We showed that most of the genes tested in the 7 DAP spikes and seedling roots of the F2 progeny showed paternal expression patterns in crosses of awnless cultivars as well as reciprocal crosses of awned and awnless lines. Consequently, the values of grain yield in the F2 progeny were similar to the pater; however, the values of seedling root mass were similar to the mother or both parents. The correlation analysis of TaCKX GFMs and NAC2 in spikes and spikes per seedling roots reveals that the genes correlate with each other specifically with the pater and the F2 progeny or the mother and the F2 progeny, which shape phenotypic traits. The numbers of spikes and semi-empty spikes are mainly correlated with the specific coexpression of the TaCKX and NAC2 genes expressed in spikes or spikes per roots of the pater and F2 progeny. Variable regression analysis of grain yield and root mass with TaCKX GFMs and NAC2 expressed in the tested tissues of five crosses revealed a significant dependency of these parameters on the mother and F2 and/or the pater and F2 progeny. We showed that the inheritance of yield-related traits depends on the specific cooperative expression of some TaCKX GFMs, in some crosses coupled with NAC2, and is strongly dependent on the genotypes used for the crosses. Indications for parental selection in the breeding of high-yielding lines are discussed.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Triticum/metabolism , Oxidoreductases/metabolism , Phenotype , Genotype , Seedlings
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396706

ABSTRACT

NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.


Subject(s)
Propiophenones , Transcription Factors , Triticum , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/metabolism , Multigene Family , Phenotype , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256072

ABSTRACT

Brassinosteroids (BRs) are a class of plant steroid hormones that are essential for plant growth and development. BRs control important agronomic traits and responses to abiotic stresses. Through the signaling pathway, BRs control the expression of thousands of genes, resulting in a variety of biological responses. The key effectors of the BR pathway are two transcription factors (TFs): BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMSSUPPRESSOR 1 (BES1). Both TFs are phosphorylated and inactivated by the Glycogen synthase kinase 3 BRASSINOSTEROID INSENSITIVE2 (BIN2), which acts as a negative regulator of the BR pathway. In our study, we describe the functional characteristics of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. We generated mutant lines of HvGSK1.1 using CRISPR/Cas9 genome editing technology. Next Generation Sequencing (NGS) of the edited region of the HvGSK1.1 showed a wide variety of mutations. Most of the changes (frameshift, premature stop codon, and translation termination) resulted in the knock-out of the target gene. The molecular and phenotypic characteristics of the mutant lines showed that the knock-out mutation of HvGSK1.1 improved plant growth performance under salt stress conditions and increased the thousand kernel weight of the plants grown under normal conditions. The inactivation of HvGSK1.1 enhanced BR-dependent signaling, as indicated by the results of the leaf inclination assay in the edited lines. The plant traits under investigation are consistent with those known to be regulated by BRs. These results, together with studies of other GSK3 gene members in other plant species, suggest that targeted editing of these genes may be useful in creating plants with improved agricultural traits.


Subject(s)
Brassinosteroids , Hordeum , Brassinosteroids/pharmacology , Hordeum/genetics , Glycogen Synthase Kinase 3/genetics , Salt Tolerance/genetics , Signal Transduction , Plant Growth Regulators
4.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629074

ABSTRACT

Fusarium graminearum is a cosmopolitan fungal pathogen that destroys cereal production, in terms of loss of yield and grain contamination with mycotoxins, worldwide. Chitosan is a natural biopolymer abundant in the environment with proven antifungal properties that also acts as a plant immunity elicitor. Despite a number of articles, there is a lack of systematic comparison of antifungal activity of diverse batches of chitosan. The current study aimed to test the inhibitory effects of a collection of diverse chitosan samples on the growth and production of F. graminearum toxins, validated by changes in the Fusarium transcriptome. Experiments included testing antifungal activity of different chitosan samples, the application of the best performing one in vitro to investigate the impact on F. graminearum growth, followed by analyzing its effect on Fusarium toxins accumulation, and Fusarium transcriptomics in the barley leaf pathosystem. Confirmatory antifungal assays revealed that CS_10, a specific batch of chitosan, retarded Fusarium growth with an application concentration of 200 ppm, significantly reducing toxin synthesis and disease symptoms in Fusarium-inoculated barley leaves. RNA-Seq analysis of F. graminearum in barley leaf pathosystem exposed to CS_10 showed a list of differentially expressed genes involved in redox balance, cell respiration, nutrient transport, cell wall degradation enzymes, ergosterol biosynthesis, and trichothecenes production. The genes functioning in these essential pathways are discussed and assigned as critical checkpoints to control Fusarium infections. The results suggest some important molecular targets in F. graminearum that may be suitable in gene-specific targeting or transgene-free methods, such as spray-induced gene silencing during host-pathogen interactions.


Subject(s)
Chitosan , Fusarium , Hordeum , Toxins, Biological , Hordeum/genetics , Antifungal Agents/pharmacology , Molecular Weight , Plant Leaves/genetics , Edible Grain
5.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175902

ABSTRACT

Members of the TaCKX gene family (GFMs) encode the cytokinin oxygenase/dehydrogenase enzyme (CKX), which irreversibly degrades cytokinins in the organs of wheat plants; therefore, these genes perform a key role in the regulation of yield-related traits. The purpose of the investigation was to determine how expression patterns of these genes, together with the transcription factor-encoding gene TaNAC2-5A, and yield-related traits are inherited to apply this knowledge to speed up breeding processes. The traits were tested in 7 days after pollination (DAP) spikes and seedling roots of maternal and paternal parents and their F2 progeny. The expression levels of most of them and the yield were inherited in F2 from the paternal parent. Some pairs or groups of genes cooperated, and some showed opposite functions. Models of up- or down-regulation of TaCKX GFMs and TaNAC2-5A in low-yielding maternal plants crossed with higher-yielding paternal plants and their high-yielding F2 progeny reproduced gene expression and yield of the paternal parent. The correlation coefficients between TaCKX GFMs, TaNAC2-5A, and yield-related traits in high-yielding F2 progeny indicated which of these genes were specifically correlated with individual yield-related traits. The most common was expressed in 7 DAP spikes TaCKX2.1, which positively correlated with grain number, grain yield, spike number, and spike length, and seedling root mass. The expression levels of TaCKX1 or TaNAC2-5A in the seedling roots were negatively correlated with these traits. In contrast, the thousand grain weight (TGW) was negatively regulated by TaCKX2.2.2, TaCKX2.1, and TaCKX10 in 7 DAP spikes but positively correlated with TaCKX10 and TaNAC2-5A in seedling roots. Transmission of TaCKX GFMs and TaNAC2-5A expression patterns and yield-related traits from parents to the F2 generation indicate their paternal imprinting. These newly shown data of nonmendelian epigenetic inheritance shed new light on crossing strategies to obtain a high-yielding F2 generation.


Subject(s)
Paternal Inheritance , Triticum , Triticum/genetics , Plant Breeding , Phenotype , Seedlings/genetics
6.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049759

ABSTRACT

Chitosan (CS), a biopolymer derived from chitin, is known for strong antifungal activity while being biodegradable, biocompatible, and non-toxic. Because of its characteristic it has been widely used in control of fungal pathogens. Antifungal activity of chitosan can be further enhanced by obtaining chitosan nanoparticles (CSNPs). However, most of the experiments using CS and CSNPs as antifungal agents were performed under various conditions and using diverse CS batches of different characteristics and obtained from different sources. Therefore, it is essential to systematize the available information. This work contains a current review on how the CS parameters: molecular weight, degree of deacetylation, acetylation pattern and dispersity of these features shape its antifungal activity. It also considers how concentration and protonation (pH) of CS water solutions define final biological effect. Review explains in detail how CS parameters affect characteristics of CSNPs, particle size, zeta potential, and dispersities of both and determine antifungal activity. In addition to the parameters of CS and CSNPs, the review also discusses the possible characteristics of fungal cells that determine their susceptibility to the substances. The response of fungi to CS and CSNPs varies according to different fungal species and their stages of development. The precise knowledge of how CS and CSNP parameters affect specific fungal pathogens will help design and optimize environmentally friendly plant protection strategies against fungi.


Subject(s)
Chitosan , Nanoparticles , Antifungal Agents/pharmacology , Chitosan/pharmacology , Chitosan/chemistry , Nanoparticles/chemistry , Particle Size
7.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499751

ABSTRACT

Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.


Subject(s)
Gene Expression Regulation, Plant , Triticum , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
J Agric Food Chem ; 70(46): 14571-14587, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36350344

ABSTRACT

Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.


Subject(s)
Fusariosis , Fusarium , Hordeum , Mycotoxins , Hordeum/genetics , Transcriptome , Plant Diseases/prevention & control , Plant Diseases/genetics , Plant Breeding , Fusarium/genetics , Food Safety
9.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362207

ABSTRACT

Global climate change and the urgency to transform crops require an exhaustive genetic evaluation. The large polyploid genomes of food crops, such as cereals, make it difficult to identify candidate genes with confirmed hereditary. Although genome-wide association studies (GWAS) have been proficient in identifying genetic variants that are associated with complex traits, the resolution of acquired heritability faces several significant bottlenecks such as incomplete detection of structural variants (SV), genetic heterogeneity, and/or locus heterogeneity. Consequently, a biased estimate is generated with respect to agronomically complex traits. The graph pangenomes have resolved this missing heritability and provide significant details in terms of specific loci segregating among individuals and evolving to variations. The graph pangenome approach facilitates crop improvements through genome-linked fast breeding.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Polymorphism, Single Nucleotide , Plant Breeding , Multifactorial Inheritance , Crops, Agricultural/genetics
11.
Plants (Basel) ; 10(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34961257

ABSTRACT

Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes' activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.

12.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768924

ABSTRACT

The influence of silenced TaCKX1 and TaCKX2 on coexpression of other TaCKX gene family members (GFMs), phytohormone regulation and yield-related traits was tested in awned-spike cultivar. We documented a strong feedback mechanism of regulation of TaCKX GFM expression in which silencing of TaCKX1 upregulated expression of TaCKX2 genes and vice versa. Additionally, downregulation of TaCKX2 highly upregulated the expression of TaCKX5 and TaNAC2-5A. In contrast, expression of these genes in silenced TaCKX1 was downregulated. Silenced TaCKX1 T2 lines with expression decreased by 47% had significantly higher thousand grain weight (TGW) and seedling root mass. Silenced TaCKX2 T2 lines with expression of TaCKX2.2.1 and TaCKX2.2.2 decreased by 33% and 30%, respectively, had significantly higher chlorophyll content in flag leaves. TaCKX GFM expression, phytohormone metabolism and phenotype were additionally modified by Agrobacterium-mediated transformation. Two novel phytohormones, phenylacetic acid (PAA) and topolins, lack of gibberellic acid (GA) and changed phytohormone contents in the 7 days after pollination (DAP) spikes of the awned-spike cultivar compared to a previously tested, awnless one, were detected. We documented that major mechanisms of coregulation of the expression of TaCKX GFMs were similar in different spring wheat cultivars, but, depending on content and composition of phytohormones, regulation of yield-related traits was variously impacted.


Subject(s)
Cytokinins/pharmacology , Oxidoreductases/genetics , Plant Growth Regulators/genetics , Triticum/growth & development , Triticum/genetics , Chlorophyll/analysis , Down-Regulation/genetics , Edible Grain/genetics , Gene Expression Regulation, Plant/genetics , Gibberellins/metabolism , Phenylacetates/pharmacology , Plant Leaves/chemistry , Plant Roots/growth & development
13.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923687

ABSTRACT

TaCKX gene family members (GFMs) play essential roles in the regulation of cytokinin during wheat development and significantly influence yield-related traits. However, detailed function of most of them is not known. To characterize the role of TaCKX2.2 genes we silenced all homoeologous copies of both TaCKX2.2.1 and TaCKX2.2.2 by RNAi technology and observed the effect of silencing in 7 DAP spikes of T1 and T2 generations. The levels of gene silencing of these developmentally regulated genes were different in both generations, which variously determined particular phenotypes. High silencing of TaCKX2.2.2 in T2 was accompanied by slight down-regulation of TaCKX2.2.1 and strong up-regulation of TaCKX5 and TaCKX11, and expression of TaCKX1, TaCKX2.1, and TaCKX9 was comparable to the non-silenced control. Co-ordinated expression of TaCKX2.2.2 with other TaCKX GFMs influenced phytohormonal homeostasis. Contents of isoprenoid, active cytokinins, their conjugates, and auxin in seven DAP spikes of silenced T2 plants increased from 1.27 to 2.51 times. However, benzyladenine (BA) and abscisic acid (ABA) contents were significantly reduced and GA3 was not detected. We documented a significant role of TaCKX2.2.2 in the regulation of thousand grain weight (TGW), grain number, and chlorophyll content, and demonstrated the formation of a homeostatic feedback loop between the transcription of tested genes and phytohormones. We also discuss the mechanism of regulation of yield-related traits.


Subject(s)
Edible Grain/genetics , Genes, Plant , Plant Growth Regulators/metabolism , Triticum/genetics , Abscisic Acid/metabolism , Chlorophyll/metabolism , Cytokinins/metabolism , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant , Homeostasis , Indoleacetic Acids/metabolism , Triticum/growth & development , Triticum/metabolism
14.
BMC Plant Biol ; 20(1): 496, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33121443

ABSTRACT

BACKGROUND: TaCKX wheat gene family members (GFMs) encode the enzyme cytokinin oxidase/dehydrogenase (CKX), which irreversibly degrades cytokinins. The genes are important regulators of cytokinin content and take part in growth and development, with a major impact on yield-related traits. The goal of this research was to test whether these genes might be differentially expressed in the field compared to laboratory conditions and consequently differently affect plant development and yield. RESULTS: We compared expression and crosstalk of the TaCKX GFMs and TaNAC2-5A gene in modern varieties grown in a growth chamber (GC) and in the field and looked for differences in their impact on yield-related traits. The TaNAC2-5A gene was included in the research since it was expected to play an important role in co-regulation of these genes. The range of relative expression levels of TaCKX GFMs and TaNAC2-5A gene among tested cultivars was from 5 for TaCKX8 to more than 100 for TaCKX9 in the GC and from 6 for TaCKX8 to 275 for TaCKX10 in the field. The range was similar for four of them in the GC, but was much higher for seven others and TaNAC2-5A in the field. The TaCKX GFMs and TaNAC2-5A form co-expression groups, which differ depending on growth conditions. Consequently, the genes also differently regulate yield-related traits in the GC and in the field. TaNAC2-5A took part in negative regulation of tiller number and CKX activity in seedling roots only in controlled GC conditions. Grain number and grain yield were negatively regulated by TaCKX10 in the GC but positively by TaCKX8 and others in the field. Some of the genes, which were expressed in seedling roots, negatively influenced tiller number and positively regulated seedling root weight, CKX activity in the spikes, thousand grain weight (TGW) as well as formation of semi-empty spikes. CONCLUSIONS: We have documented that: 1) natural variation in expression levels of tested genes in both environments is very high, indicating the possibility of selection of beneficial genotypes for breeding purposes, 2) to create a model of an ideotype for breeding, we need to take into consideration the natural environment.


Subject(s)
Genes, Plant/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Triticum/genetics , Crop Production , Environment , Gene Expression Regulation, Plant , Genes, Plant/physiology , Oxidoreductases/physiology , Plant Proteins/physiology , Quantitative Trait, Heritable , Triticum/enzymology , Triticum/growth & development
15.
Int J Mol Sci ; 21(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927724

ABSTRACT

Glycogen synthase kinase 3 (GSK3) is a highly conserved kinase present in all eukaryotes and functions as a key regulator of a wide range of physiological and developmental processes. The kinase, known in land plants as GSK3/SHAGGY-like kinase (GSK), is a key player in the brassinosteroid (BR) signaling pathway. The GSK genes, through the BRs, affect diverse developmental processes and modulate responses to environmental factors. In this work, we describe functional analysis of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. The RNAi-mediated silencing of the target HvGSK1.1 gene was associated with modified expression of its paralogs HvGSK1.2, HvGSK2.1, HvGSK3.1, and HvGSK4.1 in plants grown in normal and in salt stress conditions. Low nucleotide similarity between the silencing fragment and barley GSK genes and the presence of BR-dependent transcription factors' binding sites in promoter regions of barley and rice GSK genes imply an innate mechanism responsible for co-regulation of the genes. The results of the leaf inclination assay indicated that silencing of HvGSK1.1 and the changes of GSK paralogs enhanced the BR-dependent signaling in the plants. The strongest phenotype of transgenic lines with downregulated HvGSK1.1 and GSK paralogs had greater biomass of the seedlings grown in normal conditions and salt stress as well as elevated kernel weight of plants grown in normal conditions. Both traits showed a strong negative correlation with the transcript level of the target gene and the paralogs. The characteristics of barley lines with silenced expression of HvGSK1.1 are compatible with the expected phenotypes of plants with enhanced BR signaling. The results show that manipulation of the GSK-encoding genes provides data to explore their biological functions and confirm it as a feasible strategy to generate plants with improved agricultural traits.


Subject(s)
Glycogen Synthase Kinases/physiology , Hordeum/physiology , Salt Tolerance/genetics , Seeds/growth & development , Biomass , Brassinosteroids/metabolism , Gene Silencing , Plant Proteins/physiology , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/growth & development
16.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645965

ABSTRACT

TaCKX, Triticum aestivum (cytokinin oxidase/dehydrogenase) family genes influence the development of wheat plants by the specific regulation of cytokinin content in different organs. However, their detailed role is not known. The TaCKX1, highly and specifically expressed in developing spikes and in seedling roots, was silenced by RNAi-mediated gene silencing via Agrobacterium tumefaciens and the effect of silencing was investigated in 7 DAP (days after pollination) spikes of T1 and T2 generations. Various levels of TaCKX1 silencing in both generations influence different models of co-expression with other TaCKX genes and parameters of yield-related traits. Only a high level of silencing in T2 resulted in strong down-regulation of TaCKX11 (3), up-regulation of TaCKX2.1, 2.2, 5, and 9 (10), and a high yielding phenotype. This phenotype is characterized by a higher spike number, grain number, and grain yield, but lower thousand grain weight (TGW). The content of most of cytokinin forms in 7 DAP spikes of silenced T2 lines increased from 23% to 76% compared to the non-silenced control. The CKs cross talk with other phytohormones. Each of the tested yield-related traits is regulated by various up- or down-regulated TaCKX genes and phytohormones. The coordinated effect of TaCKX1 silencing on the expression of other TaCKX genes, phytohormone levels in 7 DAP spikes, and yield-related traits in silenced T2 lines is presented.


Subject(s)
Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Triticum/genetics , Cytokinins/genetics , Down-Regulation/genetics , Edible Grain/genetics , Oxidoreductases/genetics , Phenotype , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Seedlings/genetics
17.
PLoS One ; 15(5): e0233807, 2020.
Article in English | MEDLINE | ID: mdl-32470009

ABSTRACT

Benzoxazinoids (BXs) are secondary metabolites with diverse functions, but are primarily involved in protecting plants, mainly from the family Poaceae, against insects and fungal pathogens. Rye is a cereal crop that is highly resistant to biotic stresses. However, its susceptibility to brown rust caused by Puccinia recondita f. sp. secalis (Prs) is still a major problem affecting its commercial production. Additionally, the genetic and metabolic factors related to this disease remain poorly characterized. In this study, we investigated whether and to what extent the brown rust infection and the inoculation procedure affect the contents of specific BXs (HBOA, GDIBOA, DIBOA, GDIMBOA, DIMBOA, and MBOA) and the expression of genes related to BX (ScBx1-5, ScIgl, and Scglu). We revealed that treatments with water and a urediniospore suspension usually downregulate gene expression levels. Moreover, HBOA and DIBOA contents decreased, whereas the contents of the remaining metabolites increased. Specifically, the MBOA content increased more after the mock treatment than after the Prs treatment, whereas the increase in GDIBOA and GDIMBOA levels was usually due to the Prs infection, especially at two of the most critical time-points, 17 and 24 h post-treatment. Therefore, GDIBOA and GDIMBOA are glucosides that are important components of rye defence responses to brown rust. Furthermore, along with MBOA, they protect rye against the stress associated with the inoculation procedure used in this study.


Subject(s)
Basidiomycota/physiology , Benzoxazines/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Secale/genetics , Host-Pathogen Interactions/genetics , Seedlings/genetics , Seedlings/microbiology , Water
18.
PLoS One ; 15(1): e0227713, 2020.
Article in English | MEDLINE | ID: mdl-31929605

ABSTRACT

In wheat, adult plant resistance (APR) to leaf rust (Puccinia triticina), is effective in restricting pathogen growth and provides durable resistance against a wide range of virulent forms of P. triticina. Despite the importance, there is limited knowledge on the molecular basis of this type of resistance. We isolated and characterized the wall-associated kinase encoding gene in wheat, and assigned it as TaWAK6. Localization of TaWAK6 homeologs in A and B wheat subgenomes was consistent with the presence of the gene's orthologs in T. urartu (AA) and T. dicoccoides (AABB) and with the absence of its orthologs in Aegilops tauschii (DD). Overexpression of TaWAK6 did not change the wheat phenotype, nor did it affect seedling resistance. However, the adult plants overexpressing TaWAK6 showed that important parameters of APR were significantly elevated. Infection types scored on the first (flag), second and third leaves indicated elevated resistance, which significantly correlated with expression of TaWAK6. Analysis of plant-pathogen interactions showed a lower number of uredinia and higher rates of necrosis at the infection sites and this was associated with smaller size of uredinia and a longer latent period. The results indicated a role of TaWAK6 in quantitative partial resistance similar to APR in wheat. It is proposed that TaWAK6, which is a non-arginine-aspartate (non-RD) kinase, represents a novel class of quantitative immune receptors in monocots.


Subject(s)
Basidiomycota/physiology , Plant Diseases/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Triticum/genetics , Triticum/microbiology , Disease Resistance , Host-Pathogen Interactions , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Triticum/enzymology , Up-Regulation
19.
PLoS One ; 14(4): e0214239, 2019.
Article in English | MEDLINE | ID: mdl-30969991

ABSTRACT

Multigene families of CKX genes encode cytokinin oxidase/dehydrogenase proteins (CKX), which regulate cytokinin content in organs of developing plants. It has already been documented that some of them play important roles in plant productivity. The presented research is the first step of comprehensive characterization of the bread wheat TaCKX gene family with the goal to select genes determining yield-related traits. The specificity of expression patterns of fifteen formerly annotated members of the TaCKX family was tested in different organs during wheat development. Based on this, the genes were assigned to four groups: TaCKX10, TaCKX5 and TaCKX4, highly specific to leaves; TaCKX3, TaCKX6 and TaCKX11, expressed in various levels through all the organs tested; TaCKX1, TaCKX2.3, TaCKX2.2, TaCKX2.1, TaCKX2.4 and TaCKX2.5 specific to developing spikes and inflorescences; TaCKX9, TaCKX8 and TaCKX7, highly specific to roots. Amplification products of tested genes were mapped to the chromosomes of the A, B or D genome using T. aestivum Ensembl Plants. Based on analysis of TaCKX transcripts as well as encoded amino acids in T. aestivum and Hordeum vulgare the number of CKX genes in wheat was limited to 11 and new numbering of selected TaCKX genes was proposed. Moreover, we found that there were developmental differences in expression of TaCKX in the first and the second spike and expression of some of the genes was daily time dependent. A very high and significant correlation was found between expression levels of TaCKX7 and TaCKX9, genes specific to seedling roots, TaCKX1, TaCKX2.1 and TaCKX2.2, specific to developing spikes, and the group of TaCKX3, 4, 5, 6, 10 and 11, highly expressed in leaves and other organs. The genes also co-operated among organs and were included in two groups representing younger or maturating stages of developing plants. The first group was represented by seedling roots, leaves from 4-week old plants, inflorescences and 0 DAP spikes; the second by developing spikes, 0 DAP, 7 DAP and 14 DAP. The key genes which might determine yield-related traits are indicated and their possible roles in breeding strategies are discussed.


Subject(s)
Multigene Family/genetics , Organogenesis, Plant/genetics , Oxidoreductases/genetics , Triticum/genetics , Cytokinins/genetics , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Development/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Seedlings/growth & development , Triticum/growth & development
20.
Planta ; 249(1): 123-137, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30594955

ABSTRACT

MAIN CONCLUSION: 24-epibrassinolide overcame the inhibitory effect of brassinazole on the barley growth and the content of brassinosteroids. The present work demonstrates the occurrence of mainly castasterone, brassinolide and cathasterone and lower amounts of 24-epibrassinolide, 24-epicastasterone, 28-homobrassinolide, typhasterol, 6-deoxocastasterone and 6-deoxotyphasterol in 14-day-old de-etiolated barley (Hordeum vulgare L. cv. Golden Promise). We also investigated the endogenous level of brassinosteroids (BRs) in barley seedlings treated with 24-epibrassinolide (EBL) and/or brassinazole (Brz). To our knowledge, this is the first report related to the occurrence of BRs and application of EBL and Brz in terms of the endogenous content of BRs in barley. Brz as a specific inhibitor of BR biosynthetic reactions decreased the level of BRs in the leaves. Application of EBL showed a weak promotive effect on the BR content in Brz-treated seedlings. Brz also inhibited growth of the seedlings; however, addition of EBL overcame the inhibition. The EBL applied alone at 0.01-1 µM increased the BR level in the leaves but at 10 µM lowered the BR content. In opposition to leaves, the Brz in the concentration range from 0.1 to 1 µM did not significantly affect the content of BRs in the roots. However, application of 10 µM Brz caused BRs to decrease, but treatment of EBL concentrations overcame the inhibitory effect of Brz.


Subject(s)
Brassinosteroids/metabolism , Hordeum/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Steroids, Heterocyclic/metabolism , Brassinosteroids/pharmacology , Hordeum/drug effects , Plant Leaves/drug effects , Plant Roots/drug effects , Steroids, Heterocyclic/pharmacology , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...